극형식

    복소수의 극형식 (Polar Form of Complex Number)

    복소수의 극형식 (Polar Form of Complex Number)

    극형식 Polar Form 복소수의 절댓값과 편각을 사용하여 복소 공간에서 복소수를 표현하는 방법을 극형식이라고 한다. 복소평면 위에 $0$이 아닌 복소수 $z$가 나타내는 점을 $P\left( z\right)$, 원점을 $O$라고 할 때, 선분 $\overline{OP}$가 $x$축의 양의 방향과 이루는 각의 크기를 $\theta$로 두면 다음과 같다.$$ Re\left( z\right) =\left| z\right|\cos\theta ,\quad Im\left( z\right) =\left| z\right|\sin\theta $$이를 통해 복소수 $z$를 아래와 같이 나타낼 수 있다.$$ z=\left| z\right|\left(\cos\theta +i\sin\theta\right) ..