음함수미분법

    [미분] 2. 여러가지 미분법

    [미분] 2. 여러가지 미분법

    실수배, 합, 차, 곱, 몫의 미분법미분가능한 두 함수 $f(x)$와 $g(x)$의 사칙연산으로 이루어진 함수의 도함수는 아래의 미분법을 통해 간단히 구할 수 있다.  실수배임의의 실수 $c$에 대해 함수 $ y=c \cdot f(x) $ 의 도함수를 구하면$$ \{c \cdot f(x)\}'=\lim_{h \to 0}\frac{c \cdot f(x+h) - c \cdot f(x)}{h}=c \cdot \lim_{h \to 0}\frac{f(x+h)-f(x)}{h}=c \cdot f'(x) $$  합차$$ \begin{align} \{f(x) \pm g(x)\}' &=\lim_{h \to 0}\frac{\{f(x+h) \pm g(x+h)\}-\{f(x) \pm g(x)\}}{h} \..