선전하

    선전하에 의한 전기장 - 직선도선

    선전하에 의한 전기장 - 직선도선

    점전하가 아닌 선전하나 면전하에 의한 전기장을 구할 때는, 선이나 면을 미소단위로 나누어 전기장을 미소점전하들에 의한 전기장의 합으로 생각할 수 있다.  직선 상에 있는 경우그림과 같은 경우에서 도선의 단위길이당 전햐량, 즉 선전하밀도 $\lambda =\frac{Q}{L}$ 이다. 원점 $O$로 부터의 거리를 $x$라 하면, 미소길이 $dx$에서의 전하량 $dQ=\lambda dx$ 이다. 따라서 미소점전하 $dQ$에 의한 전기장 $dE$는 다음과 같다.$$ dE=\frac{1}{4\pi\epsilon _0}\frac{dQ}{x^2}=\frac{1}{4\pi\epsilon _0}\frac{\lambda dx}{x^2} $$직선 도선에 의한 전기장은 이들 미소점전하들의 합이므로 다음과 같..

    선전하에 의한 전기장 - 원형고리

    선전하에 의한 전기장 - 원형고리

    점전하가 아닌 선전하나 면전하에 의한 전기장을 구할 때는, 선이나 면을 미소단위로 나누어 전기장을 미소점전하들에 의한 전기장의 합으로 생각할 수 있다.  ​원형고리에 의한 전기장​다음과 같은 원형고리를 둘레로 하는 원의 중심을 수직으로 지나는 직선 위의 점에서 원형고리도선에 의한 전기장 세기를 구해보겠다. 도선의 단위길이당 전햐량, 즉 선전하밀도 $\lambda =\frac{Q}{2\pi R}$ 이다. 도선의 호의 길이를 $s$라 하면, 미소길이 $ds$에서의 전하량 $dQ=\lambda ds$ 이다. 따라서 미소점전하 $dQ$에 의한 전기장 $dE$는 다음과 같다.$$ dE=\frac{1}{4\pi\epsilon _0}\frac{dQ}{z^2+R^2}=\frac{1}{4\pi\epsi..