수학

    델 연산자 (Del Operator) - 그래디언트, 다이버전스, 컬, 라플라시안

    델 연산자 (Del Operator) - 그래디언트, 다이버전스, 컬, 라플라시안

    정의 델 연산자는 $\nabla$와 같이 나타내며 아래와 같이 정의된다.$$ \nabla =\sum_{i=1}^n \frac{1}{h_{i}}\frac{\partial}{\partial x_{i}}\hat{x_{i}} $$ 이처럼 델 연산자는 벡터로 취급하여도 무방하다. $h_{i}$는 Scaling Factor이며 극좌표계, 원통좌표계, 구면좌표계와 같이 서로 직교하는 좌표계에서는 $h_{i}$만큼 보정하여 계산한다. 직교좌표계 : $h_{x}=1$, $h_{y}=1$, $h_{z}=1$구면좌표계 : $h_{r}=1$, $h_{\theta}=r$, $h_{\rho}=r\sin\theta$원통좌표계 : $h_{\rho}=1$, $h_{\theta}=r$, $h_{z}=1$ 따라..

    벡터의 연산 Vector Algebra

    벡터의 연산 Vector Algebra

    벡터의 정의 벡터 공간이란, 간단히 말하면 원소들을 서로 더하거나 주어진 배수로 늘리고 줄일 수 있는 공간을 의미하며 이러한 벡터 공간의 원소를 벡터라고 한다. 벡터 공간은 수학적으로 이보다 더 엄밀하게 여러 공리들을 만족하는 공간으로 정의된다. 따라서 일반적으로는 크기와 방향을 가지는 양(유클리드 기하적 벡터)을 벡터라고 한다.  벡터의 표기 $ \vec{A} $ 또는 $ \mathbf{A} $ 와 같이 기호로 나타낸다또한 벡터의 크기는 $ \left|\vec{A}\right| $ 또는 $ \left|\mathbf{A}\right| $ 와 같이 나타낸다.  단위벡터 단위벡터란, 크기가 1인 벡터를 의미하며 $ \hat{A} $ 와 같이 나타낸다. 직교좌표계에서 단위벡터는..

    테일러 급수를 이용한 오일러 공식의 증명

    테일러 급수를 이용한 오일러 공식의 증명

    오일러 공식실수 $x$에 대하여 다음이 성립한다$e^{ix}=\cos x+i\sin x$수학자 레온하르트 오일러의 이름이 붙은 공식으로 복소수 지수를 정의하는 출발점이 되며, 복소평면 상에서 삼각함수와 지수함수에 대한 관계를 나타낸다.  증명테일러 급수테일러 급수 글을 참고하여라.   (adsbygoogle = window.adsbygoogle || []).push({});  오일러 공식 증명테일러 정리에 의해 $\sin x, \cos x, e^{ix}$ 함수를 다음과 같이 매클로린 급수로 나타낼 수 있다.(허수지수가 정의되지 않았지만, 오일러 공식이 허수지수를 정의하는 데 쓰이므로 넘어간다.)$$ \sin x=x-\frac{x^3}{3!}+\frac{x^5..

    테일러 급수와 테일러 정리의 증명

    테일러 급수와 테일러 정리의 증명

    테일러 급수미적분학에서, 테일러 급수란 주어진 함수를 정의역의 특정 점에서의 미분계수들을 계수로 하는 다항식의 무한합으로 표현하는 것을 말하며 테일러 전개라고도 부른다. 즉, 여러번 미분가능한 함수 $f(x)$에 대하여 $x=a$에서 $f(x)$에 접하는 멱급수로 표현하는 방법이다.(테일러 급수$\ne$멱급수 이지만 여기서는 간단히 설명하고 넘어가겠다)  테일러 정리어느 구간에서 미분가능한 함수를 유한 테일러 다항식과 근접할수록 $0$에 가까워지는 오차항의 합으로 표현할 수 있다는 것이 테일러 정리이다. 접선을 통해 함수를 근사하는 선형 근사를 일반화한 다항함수 형태라고 생각할 수 있으며, 테일러 급수는 이 테일러 다항식에서 오차항을 없애고 무한차원까지 확장한 것으로 볼 수 있다.  ..

    [적분] 6. 미적분학의 기본정리

    [적분] 6. 미적분학의 기본정리

    미적분학의 기본정리미적분에 관한 기본정리로, 평균값의 정리와 함께 미적분의 근간이 된다.정리1. $\frac{d}{dx}\int_{a}^{x}f(t)\, dt=f(x)$정리2. $\int_{a}^{b}f(x)\, dx=F(b)-F(a)\quad (\frac{d}{dx}F(x)=f(x))$  증명미적분학의 제1 기본정리$S(x)=\int_{a}^{x}f(t)\, dt$, 구간 $[x, x+\Delta x]$에서 $f(x)$의 최댔값을 $M$, 최솟값을 $m$이라고 정의하자.$$ m\Delta x\le S(x+\Delta x)-S(x)\le M\Delta x $$$$ \lim_{\Delta x\to 0}m\le\lim_{\Delta x\to 0}\frac{S(x+\Delta x)-..

    [적분] 5. 리만 합과 리만 적분(Rimann Integral)

    [적분] 5. 리만 합과 리만 적분(Rimann Integral)

    정적분의 시작부정적분과 정적분은 마치 동질적인 것처럼 보이지만 이 둘은 미적분학의 기본정리에 의해 엮어질 뿐, 그 시초와 본질이 전혀 다르다. 부정적분이 미분의 역연산으로서 17세기 이후에 만들어진 것과는 대조되게, 정적분은 수천년 전부터 구분구적법이라는 개념으로 존재했다. 원과 같이 곡선을 포함하여 그 넓이를 재기 어려운 도형들의 넓이를 계산하기 위해, 사각형과 같은 쉽게 넓이를 구할 수 있는 도형들의 작은 조각들로 그 넓이를 어림하여 계산하는 것이다. 이후 라이프니츠가 이러한 도형의 개수를 무한히 늘리면 어림의 오차가 없어져 실제와 같아진다는 아이디어로 정리하였고, 최종적으로 베른하르트 리만이 리만 적분이라는 형태로 완성하였다.  리만 합닫힌 구간 $[a, b]$에서 불연속점이 유한개..

    [적분] 4. 부분적분

    [적분] 4. 부분적분

    부분적분법부정적분은 미분의 역작용이므로 모든 적분 공식과 계산 기법들은 미분 공식에서 파생된다. 부분적분 또한 곱의 미분법에서 출발한다. 미분가능한 함수 $f(x)$, $g(x)$에 대해$$ \{f(x)g(x)\}'=f'(x)g(x)+f(x)g'(x)\Longrightarrow f'(x)g(x)=\{f(x)g(x)\}'-f(x)g'(x) $$양변을 $x$에 대해 부정적분하면$$ \int_{}{}f'(x)g(x)\, dx=\int_{}{}\{f(x)g(x)\}'\, dx-\int_{}{}f(x)g'(x)\, dx=f(x)g(x)-\int_{}{}f(x)g'(x)\, dx $$ 부분적분을 통해 적분 시에 단순한 형태가 되는 함수와 미분 시에 단순한 형태가 되는 함수의 곱으로 이루어진 함수를 쉽..

    [적분] 3. 치환적분 기법 (삼각치환, 반각치환)

    [적분] 3. 치환적분 기법 (삼각치환, 반각치환)

    치환적분 글에서 다루었던 방법들로는 적분하기 어려운 함수들도 존재한다. 그러한 함수들은 삼각치환이나 반각치환을 이용하여 풀 수 있다. [적분] 2. 치환적분치환적분법부정적분은 미분의 역작용이므로 모든 적분 공식과 계산 기법들은 미분 공식에서 파생된다. 치환적분 또한 합성함수의 미분법에서 출발한다. 미분가능한 함수 $f(x)$, $g(x)$에 대해$$ \flyssion-studynote.tistory.com  삼각치환삼각치환이란 다음의 두 삼각함수들의 항등식을 이용하여 함수를 적분하는 방법이다.$$ \sin ^2x+\cos ^2x=1 $$$$ \tan ^2x+1=\sec ^2x $$예시를 하나 들어보자. 함수 $f(x)=\frac{1}{x^2+1}$은 분모를 다른 문자로 치환..

    [적분] 2. 치환적분

    [적분] 2. 치환적분

    치환적분법부정적분은 미분의 역작용이므로 모든 적분 공식과 계산 기법들은 미분 공식에서 파생된다. 치환적분 또한 합성함수의 미분법에서 출발한다. 미분가능한 함수 $f(x)$, $g(x)$에 대해$$ \frac{d}{dx}f(g(x))=f'(g(x))g'(x) $$$$ f(g(x))=\int_{}{}f'(g(x))g'(x)\, dx $$$g(x)=t$로 치환한다. 이때, 함수 $t$는 일대일대응이여야 한다. 양변을 $x$에 대해 미분하면 $g'(x)=\frac{dt}{dx}$이므로$$ g'(x)dx=dt $$$$ \int_{}{}f'(g(x))g'(x)\, dx=\int_{}{}f'(t)\, dt $$$\frac{d}{dx}$ 자체가 하나의 연산자이기 때문에 위와 같은 식의 전개가 이질적으로..